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Abstract. The aim of this paper is to show that the new continuously differentiable exact penalty 
functions recently proposed in literature can play an important role in the field of constrained global 
optimization. In fact they allow us to transfer ideas and results proposed in unconstrained global 
optimization to the constrained case. 

First, by drawing our inspiration from the unconstrained case and by using the strong exactness 
properties of a particular continuously differentiable penalty function, we propose a sufficient 
condition for a local constrained minimum point to be global. 

Then we show that every constrained local minimum point satisfying the second order sufficient 
conditions is an "attraction point" for a particular implementable minimization algorithm based on the 
considered penalty function. This result can be used to define new classes of global algorithms for the 
solution of general constrained global minimization problems. As an example, in this paper we 
describe a simulated annealing algorithm which produces a sequence of points converging in 
probability to a global minimum of the original constrained problem. 

Key words. Constrained global optimization, global optimality, strict local minima, simulated 
annealing algorithm, exact penalty function. 

1. Introduction 

Let us consider the following nonlinear programming problem: 

minimize f(x) 
s.t. g(x)<~O, (P) 

h(x) = O, 

where f :  E"---~R, g: Rn---~ R m, h: ~n...._~q, q<~n are three times continuously 
differentiable functions. We denote by 

: = {x E Rn: g(x) <- O, h(x) = 0} 

feasible set of Problem (P). 
In this paper we consider the problem of finding a global minimizer of Problem 

(P), that is a point x* E o% such that: 

f (x*)~<f(x) ,  for all xEo%. 
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In the literature a big variety of results and algorithms have been proposed in 
the field of unconstrained global optimization (see [1-6]). 

The situation is very different for the constrained case. In fact, apart from 
special classes (see, for instance, [7-9]), so far only few works have been done in 
the field of general constrained global minimization problems [9-13]. 

A natural way to treat problems with constraints is to get rid of the constraints 
by redefining the objective function [10]. Recently, in [14] a continuously 
differentiable exact penalty function has been introduced which, under suitable 
assumptions, presents very strong exactness properties. The merit function of [14] 
has been further investigated in [15] where its expression has been changed so as 
to obtain a new continuously differentiable penalty function which maintains the 
same properties of exactness under weaker assumptions. 

By making use of these exact penalty functions, many ideas and techniques 
applicable to unconstrained global optimization can be transferred to the 
constrained case. Therefore these penalty functions provide us with a direct and 
powerful way of tackling constrained global optimization problems. In this paper 
we begin to exploit the properties of these new merit functions and the results 
obtained confirm the goodness of this approach. 

In particular, as first result, we present a sufficient condition for a local 
constrained minimum point to be global. This global optimality condition derives 
from an analogous result given in [6] for the unconstrained case and from the 
exactness properties of the penalty function proposed in [15]. It states that, under 
quite mild assumptions, if every Kuhn-Tucker point of the problem is a strict 
local minimum then the problem has only one Kuhn-Tucker point which is a 
global minimum. 

As second result, we show that every constrained local minimum point 
satisfying the second order sufficient conditions is an "attraction point" for a 
particular implementable minimization algorithm based on the penalty function of 
[15]. This result can be the starting point to define new classes of algorithms for 
the solution of general constrained global minimization problems. As an example, 
in this paper we describe a simulated annealing algorithm which generalizes the 
approach described in [16] and it consists of several local unconstrained minimiza- 
tions of the considered penalty function. Any of this minimization is started from 
points chosen at random (by using an acceptance-rejection technique) according 
to a probability density function which is updated during the algorithm so as to be 
concentrated around the global minimizers of the original problem. The exactness 
property of the considered penalty function and the way of generating the starting 
points of the local minimizations ensure that, under mild assumptions, the 
sequence of points produced by the algorithm converges in probability to the 
solution of the problem. 

The paper is organized as follows. In Section 2 we briefly describe the penalty 
function proposed in [15] and its exactness properties. In Section 3 we derive the 
sufficient condition for the global optimality. In Section 4 we consider the 
problem to define methods to solve constrained global optimization problems. 



CONTINUOUSLY DIFFERENTIABLE EXACT PENALTY FUNCTIONS 51 

2. The Exact Penalty Function 

In this section we briefly describe the exact penalty function proposed in [15] and 
some of its properties which will be used in this paper. We refer to [15] and [14] 
for a more detailed analysis of these results (see also [17] for a similar treatment 
for nonlinear programming problems with equality and inequality constraints). 

The Lagrangian function associated with Problem (P) is the function L : Rn • 
[~m X ~q"-> ~ defined by 

L(x, A,/x):= f(x) + A'g(x) +/~ 'h(x) .  

A point 2 E  ~n is called a Kuhn-Tucker point for Problem (P) if there exist 
multiplier vectors (A,/2) E ~m x ~q such that 

V~L(Y,X,/2)=O, G(x--),~=O, , ~ > 0 ,  g(2)<~O, h(x-)=O, 

where G(x):= diag(gi(x)) and, furthermore, (Y, ,~, /2) is called Kuhn-Tucker 
triple. We say that the strict complementarity holds at K - T  triple (Y,)t, /2) if, for 
any index i such that gi(x-) = 0, we h a v e / ~ i  > 0. Then, for any x E En, we define 
the index set 

Io(x):= {i: g~(x) = 0}. 

We say that a local minimum point 2? for Problem (P) satisfies the strict 
complementary and the second order sufficiency conditions if there exist vectors 
AE Nm, fi E Nq such that the point (2, X,/2) is a Kuhn-Tucker  triple for Problem 
(P) satisfying the strict complementarity condition and 

l 2 - z V~L(x, A, fi)z > 0 ,  

for all z # 0 such that Vgi(x--)'z = 0, for i ~ 10(2 ) and Vhj(2)'z = 0, for ] = 1 , . . . ,  q. 
+ 

We denote by g+(x) the vector with components gi (x) := max[0, gi(x)], i= 
1 , . . . , m .  

Let now a, p ~ R be given scalars such that a > 0 and p t> 2. 
In connection with these two scalars we consider an open perturbation of the 

feasible set ~ defined by: 

.~,~p := X (~ R: gi (X) + hi-(x) 2 < a 
i = 1  j= l  

and we denote by M,p the closure of ~ p  and by O~p 
we introduce the function 

the boundary of M~p. Then 

q 
+ p a(x) := a - gi (x) - ~ hi(x) 2 , (1) 

i = 1  / = 1  

which assumes positive values on M~p and it is null on its boundary. 
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In the sequel we shall make use of the following hypotheses: 

ASSUMPTION A1. The set M~p is compact.  [] 

ASSUMPTION A2. For every x ~ ~ the gradients V&(x), i E Io(x), Vhj(x), j = 
1 . . . .  , q are linearly independent.  [] 

ASSUMPTION A3. For every x ~ Map 

q 

Oi(x)g7 (X)lTgi(x) + E wj(x)hj(x)Vhj(x) = O,  
i=1 j = l  

where 

p (l lg+(x)l l  + Ilh(x)ll 
vi(x ) = 1 + ~ a(x) 

IIg+(x)ll 2 + IIh(x)ll 2 
wj(x) = 1 + a(x) 

+ z  x p - 2  gi IX) 

+ 
implies that gi (x) = O, for  i = 1 , . . . ,  m, and hi(x) = O, for  j = 1 , . . . ,  q. [] 

The preceding assumptions seem to be mild conditions on the problem and, so 
far, they are the weakest possible assumptions which imply a total equivalence 
between the solution of a constrained problem and the unconstrained minimiza- 
tion of a differentiable function. 

Assumption A1 ensures that the proposed penalty function has compact level 
sets and, in particular, it is satisfied if all the variables are bounded or if there 
exist at least a function gi or a function hj that is radially unbounded. 

Assumption A2 is needed to define an exact penalty function which is 
continuously differentiable. In particular it is the weakest assumption allowing the 
definition a continuously differentiable multiplier functions that yield an estimate 
of the multiplier vectors associated with Problem (P) as functions of the variable 
x. The definition of such multiplier functions is an essential element to define a 
continuously differentiable exact penalty function. 

Assumption A3 is required when a feasible point is not known "a priori". In 
this case, besides minimizing the objective function, we must also solve the 
problem of finding a feasible point. This is a difficult problem because it is 
equivalent to find the global minimum of a (usually nonconvex) function which 
measures t he  violation of the constraints. Therefore in order to ensure the 
attainment of feasibility we must assume some "good behaviour" of the con- 
straints at nonfeasible points. In fact all the papers dealing with global convergent 
methods for constrained minimization problem require a (global) regularity 
condition on the constraints. Assumption A3 appears to be at least comparable 
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with the other assumptions proposed in literature. In particular, in [15] it is shown 
that Assumption A3 is implied by the typical assumptions used in sequential 
quadratic programming methods and in the methods based on exact continuously 
differentiable penalty functions. Furthermore, it is possible to prove (see [15]) 
that, in general, Assumption A3 is a sufficient condition for the feasible set to be 
not empty but, in particular, it is also necessary in the case of compact feasible 
sets given by convex inequalities and linear equalities. Therefore, at least for this 
class of feasible sets, this assumption is the weakest possible condition that 
ensures that the original constrained problem is well defined. 

We refer to [15] (see also [14]) for a more detailed discussion of Assumptions 
A1-A3.  

Here we recall a proposition, proposed in [14], that will be used later on. 

PROPOSITION 1. Assume that: 

(i) there exists scalars & and p >i 2 such that the set fCap satisfies Assumption A1; 
(ii) Assumption A 2  holds. 

Then, there exists an ~ <~ d~ such that for  all a E (0, d] the corresponding set S~p 
satisfies: ~ C_ ~r and for  every x E ~ p  the gradients 7gi(x), i E {i': gi,(x) >! 0}, 
Vhi(x ), j = 1 , . . . ,  q are linearly independent. [] 

In the sequel of this section we shall assume that Assumptions A1 and A2 hold; 
Assumption A3 will be invoked explicitly when needed. 

Now we describe the multiplier functions (h(x),  Ix(x)) introduced in [15] and 
needed in the expression of the new penalty function. 

PROPOSITION 2. Let (h(x), Ix(x)) be the functions given by: 

-1 g(x) [h(x)] = - M  (x) Vf(x) �9 
Lix(x)J Vh(x)' ' 

where 

M(x) := [Vg(x)'Vg(x) + ~:(x) + r(x)& Vg(x)'Vh(x) ] 
[ Vh (x ) 'Vg (x )  Vh(x)'Vh(x) + r(X)IqJ' 

r(x) := ziml g+(x) p + Eq=lhj(x) 2 and I m (Iq) indicates the m x m (q x q) identity 
matrix. Then if (s X, 12) E ~n X ~m X ~q is a K - T  triple for  Problem (P) we have 
that h(x-) = h and ix(x-) = ft. [] 

Now, we can define on ~,p the exact penalty function proposed in [15]: 

1 
Z(x; ~) := f(x) + ~(x)'c(x; ~) + Ix(x)'h(x) + ~  [llc(x; ~)ll: + Ilh(x)ll2] , 

(3) 

where: 
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ea(x) Ai(x)] i =  1 , . .  , m  Ci(X" ~ e) := max gi(x), 2 ' " " 

Given a point 2 E ~r we can introduce the following level set: 

:= (x Z(x; e) e)}.  

Then we report some properties of the function Z(x; e) which are necessary to 
prove the results of this paper. We refer to [15] for the proofs of Proposition 3, 
Theorem 1 and Theorem 2. While the proof of Proposition 4 can be obtained, 
with minor modifications, from the one given in [18] for a similar result. 

P R O P O S I T I O N  3. For any e > 0, 
(a) Z(x; e) is continuously differentiable for all x E ~ p  , with gradient 

7Z(x; e) = Vf(x) + Vg(x)A(x) + 7h(x)l~(x) 

2 
+ W(x)c(x; e) + e) + Vh(x)h(x)] 

ca(x) 2 P i = 1  Vgi(x)gi (;If) q- 2Vh(x)h(x) ," 

(4) 

(b) Z(x; e) <-f(x) for all x ~ ~;  
(c) Z(x; e) admits a global minimum point on J~p. [] 

T H E O R E M  1. 
(a) Let (,2, A, ~) be a K - T  triple for Problem (P); then, for any e > O, we have: 
7Z(Y; e) = 0, c(Y; e) = 0 and Z(J?; e) =f(x-) .  
(b) Assume that either Yc ~ ~ or Assumption A3 holds. Then, there exists an 
e* > 0  such that, for all e ~ (0, e*], if x~ E f~p( ~) is a stationary point of  Z(x; e), 
we have that (x~, A(x~), /x(x~)) is a K - T  triple for Problem (P). [] 

T H E O R E M  2. Suppose that Problem (P) is well defined, namely the feasible set 
is not empty. Then there exists an e* such that for all e E (0, e*], any global 
minimum point of  Problem (P) is an unconstrained global minimum point of  
Z(x; e) on ~l p and conversely. [] 

P R O P O S I T I O N  4. Assume that p >i 3 in the definitions of  a(x) and ~ p .  Let (x*, 
h*, /z*) be a K - T  triple for Problem (P) that satisfies the strict complementarity 
and the second order sufficiency conditions. Then, there exist an e* such that for all 
e E (0, e*], x* is an isolated local minimum point for Z(x; e) and the Hessian 
matrix V2Z(x*'~ e) is positive definite. [] 
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3. A Global Optimality Condition for Constrained Minimization 
Problems 

In [6] an interesting global optimality condition is described. Under very weak 
assumptions, it states that if a function has the property that its stationary points 
are strict local minimum points then this function has only one stationary point 
which is a global minimum point. In this section we extend this condition tO the 
constrained case. In order to obtain this result, we need two new propositions 
which make deeper the analysis of the exactness properties of Z. The first 
proposition is quite technical. It shows that in part (b) of Theorem 1 it is possible 
to replace the level set ~-~ap(.~) by the set ~/~p. In others words, it states that, if 
the penalty parameter is sufficiently small, all the stationary points of Z belonging 
to ~r are K-T  points for Problem (P) (whereas part (b) of Theorem 1 
considered only the stationary points of Z belonging to 1~ p(2)). 

PROPOSITION 5. Assume that 
(i) Assumptions A1 and A 2  hold; 

(ii) for  every x E ~ p  

+ p - 1  p Vgi(x)g i (x) + 2Vh(x)h(x) = 0 
i = I  

4- 
implies that gi (x) = O, for  i = 1 , . . . ,  m, and hi(x) = O, for  j = 1 . . . .  , q. 

Then, there exists an e* > 0  such that, for  all e E (0, e*], if  x, E Sg~p is a 
stationary point  o f  Z(x; e), we have that (x,, A(x~), /z(x~)) is a K - T  triple for  
Problem (P). 

Proof. Let ~ be any positive constant. First we show that there exists a point 
~ ~r such that, for every e E (0, ~], all the stationary points of Z(x; e) in ~r 

belong to 12~p(~). We proceed by contradiction. Assume that the assertion is 
false. Then for every sequence {Xk} of points x k ~ ~r there exist two sequences 
{ek} and {xT,} such that e k E (0, ~] and every x~ is a stationary point of Z(x; ek) 
in Sr and 

Z ( x , ;  < . (5) 

Now we can choose the sequence (Xk} such that Xk--->~ E Osg,~p. By (1) and the 
continuity assumptions, we have limk_~=a(xk)= a(~)= 0. Then recalling (3) and 
the compactness of ~/~p, we obtain limk__,~oekZ(Xk; ek)= oo. NOW (5) yields: 

lim ekZ(x*~; ek) ~>lim ekZ(x~,; e~,) = 
k ' '~  oo k--> ' 

which, since x~ E ~r and ~/~p is compact, implies (by recalling (3)): 

lim a(X*k ) -'- O . 
k---> oc 

(6) 
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Since the sequence {e~} is bounded we also have: 

lim eka(X*k) 2 = 0. (7) 
k---~ co 

By using again the compactness of ~ ,p ,  we have that there exists a convergent 
subsequence, which we relabel {Xk} , such that limk_,~x ~ = x * E  ~ p .  Further- 
more, (6) yields a(x*)= O. 

Taking into account that every x~ is a stationary point of Z(x; ek) and recalling 
(4) and (7), we obtain: 

0 = l i m  , 2 ,. e~a(x,) VZ(Xk, e~) 

i = 1  

which, by assumption (ii), implies that x* E ~. Therefore we obtain a contradic- 
tion with a(x*)= O. 

Now, since there exists a point i E M,p such that, for every bounded e > 0, all 
the stationary points of Z(x; e) in ~ p  belong to fL,p(i), the result follows directly 
from part (b) of Theorem 1. [] 

The next proposition completes the correspondence between the isolated local 
minimum points of Problem (P) and those of the function Z. 

PROPOSITION 6. Assume that the feasible set ~ is not empty and that 
Assumptions A1 and A2  hold. Then there exists an ~ such that for all e E (0, g], 
every strict local minimum point of  Problem (P) is an unconstrained strict local 
minimum point of  Z(x; e) on ~ p  and, if moreover Assumption A3 holds, also the 
converse is true. 

Proof. First we assume that ~? is a strict local minimum point of Problem (P). 
Therefore there exists an open set E C_ Map such that ~ ~ E and for every point 
x E ff  fq/~ (where/~ is the closure of E), with x # Y, then f(x) >f(x-). By part (a) 
of Theorem 1 we have Z(Y; e)=f(x-). Now, by contradiction, assume that the 
proposition is false. Then, for every integer k, there must exist an e k ~< 1/k such 
that :~ is not an unconstrained strict local minimum point of Z(x; ek). Therefore 
the global minimum point Xk of Z(X; e) on /~ satisfies: 

z(x ; (8) 

Since/~ is a compact set, there exists a convergent subsequence which we relabel 
{Xk}, such that limk__,~oX k = 2. By (8) we obtain: 

lim sup Z(xk; e) <~ f(.f) , 
k---> oo 
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which, since ek--->0 , recalling (3) and Assumption A1, implies 

c(J2;0)=0,  h($) - -0  and f(~)~<f(x-), 

and, hence, since $ E ff  fq/~, it must result that ~ = s Therefore, since x k ---> ~ = 
s  we have that, for sufficiently large values of k, the points x k are 
unconstrained global minima and, hence, we have also that VZ(xg; ek)= O. 

Now (8) implies that xk E f~p(X-) and, hence, for k large enough, part (b) of 
Theorem 1 ensures that (s h(x~, /z(x-)) is a K-T  triple for Problem (P). Then 
part (a) of Theorem 1 implieS in turn that, for sufficiently large values of k, 

Z(xk;ek) =f(xk) and x k E f t ,  

and, by using (8) it follows that f (x , )  <~f(x-) which contradicts the assumption that 
xk~P~. 

Now assume that s is a strict local minimum point of Z(x; e) on ~/,p (and, 
hence, a stationary point of Z(x; e)). We note that, by using part (b) of Theorem 
1, we have that there exists an g such that, for all e E (0, g], (s A(x-), /z(x--)) is a 
K-T  triple for Problem (P) and, by recalling part (a) of Theorem 1, Z(s e) = 
f(x-). Since s is an isolated local minimum point of Z(x; e) there exists a 
neighborhood ~ of s such that: 

f ( x - ) = Z ( Y ; e ) < Z ( x ; e ) ,  for all x E ~ .  

Then, recalling part (b) of Proposition 3, we obtain: 

f ( s  forall  x ~ f q J  

which completes the proof of the proposition. [] 

Now we are ready to state the main result of this section. Roughly speaking, this 
theorem allows to identify a class of constrained global optimization problems 
that are "easy" to solve. 

THEOREM 3. Assume that: 
(i) the feasible set ~ is not empty and connected; 

(ii) there exist scalars & > 0 and p >i 2 such that the set ~ap is bounded; 
(iii) for every x E ~ the gradients Vgi(x), i ~ Io(x), Vhj(x), j = 1 , . . . ,  q are linearly 

independent; 
(iv) every KKT point of  Problem (P) is a strict local minimum point. 

Then there exists only one KKT point which is a global minimum point for 
Problem (P). 

Proof. First of all, we note that assumption (iii) coincides with Assumption A2. 
Then, by using assumptions (ii) and (iii), and by recalling Proposition 1 we can 
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conclude that there exists an a ~< & such that the corresponding set ~/~p satisfies 
Assumptions A1, Assumption A3 and assumption (ii) of Proposition 5. 

Now, on ~/,p, we introduce the exact penalty function Z(x; e) and we show 
that, for sufficiently small values of the penalty parameter e, the function Z(x; e) 
and the set ~/,p satisfy the assumptions of Theorem 2.1 of [6]. More precisely, we 
show that they satisfy the assumptions of Theorem A of Appendix which is an 
equivalent version of the result of [6]. 

First of all we note that assumption (ii) of Theorem A follows from part (a) of 
Proposition 3. Since Z(x; e)---~ for x---~ OM~p we have that also assumption (iii) 
holds. Then part (a) of Theorem 1, Proposition 5 and Proposition 6 state that, for 
sufficiently small values of the penalty parameter e, every stationary point (every 
strict local minimum point) of Z(x; e) on ~r is a KKT point (a strict local 
minimum point) of Problem (P) and vice versa. Therefore assumption (iv) of this 
theorem implies, for sufficiently small e, assumption (iv) of Theorem A. 

Finally we have to show that also assumption (i) of Theorem A holds, namely 
we have to prove that the set ~/~p is connected. We prove this property by 
proceeding by contradiction. We assume that ~ p  is disconnected. Since the 
feasible set ~- is connected there exist two open sets A 1, A 2 such that ~/~p n A 1 
and ~r A A 2 a r e  disjoint, nonempty sets whose union is ~/~p and such that 
o% C_ ~/p n A 1. Now, the compactness of ~/~p implies that also the se t  ~otp n lz~ 2 

is a compact set. Now we introduce the function s(x)= 1/a(x) (where a(x) is 
defined in (1)). Since s(x)--~ ~ if x--~ O~g~p, this function admits a global minimum 
point 2 on ~ap A A2. Moreover, if ~E~/~p n o.~ 2 th is  would imply, since 
~/~p C_ A a U A2, that ~ belongs to the open set ~ p  n A 1 this would contradict the 
fact that ~r N A 1 and ~ p  n A 2 are disjoint. Therefore we can conclude that ~ is 
an unconstrained minimum point of the function s(x) on ~/~p n A2 and, hence, 
recalling (1), we must have: 

Vgi(x)g i (x) + 2Vh(2)h(~) = 0. 
i=l 

which, by recalling that ~/~p satisfy assumption (ii) of Proposition 5, implies that 
2 E ff  and this establishes a contradiction with the fact that ~- C ~r n A 1. 

At this point we can apply Theorem A of the Appendix and we can conclude 
that function Z(x; e) has only one stationary point on ~r which is a global 
minimum point. The proof of the theorem follows from Theorem 2 and again 
from part (a) of Theorem 1, Proposition 5 and Proposition 6. [] 

Assumptions (i)-(iii) appear to be mild requirements on the constraint functions. 
In particular, as regards the less familiar assumption (ii), Proposition 2.1 of [15] 
shows some conditions under which this assumption holds for every a > 0 and 
p t> 2, namely: 
- i f  all the variables are bounded; 
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- i f  there exists either a function gi(x) such that limllxll~o=gi(x)---> ~ or a function 
hi(x ) such that limllxll__>~llhi(x)l]--->~; 

- if there exists an index set J such that the functions &(x), i E J are convex and 
the set {xERn:  gi(x)<~O, i ~ J }  is compact. 

From the proof of Theorem 3 we can derive also the following result. 

COROLLARY 1. Assume that: 
(i) there exist scalars a > 0 and p >t 2 such that the set Sg~p is bounded, nonempty 

and connected; 
(i 0 Assumption A3  and assumption (ii) of  Proposition 5 hold on Sg~p; 

(iii) for every x E ~ the gradients 7gi(x), i E Io(x), 7hi(x), j = 1 , . . . ,  q are linearly 
independent; 

(iv) every K K T  point of  Problem (P) is a strict local minimum point. 
Then, there exists only one K K T  point which is a global minimum point for 

Problem (P). 

4. Constra ined  Global Minimizat ion  Algor i thms 

In this section we describe one of the possible uses of the penalty function Z to 
define algorithms to solve constrained global minimization problems. 

Apart from very particular and simple cases, we cannot find the global 
minimizer of Problem (P) by applying directly an unconstrained global minimiza- 
tion algorithm to the penalty function Z(x; e). In fact, as we have seen in Section 
2, Problem (P) is equivalent to the unconstrained minimization of function 
Z(x; e) only if the value of the penalty parameter e is less or equal to a threshold 
value e*. The problem is that the value e* is not known a priori. Therefore, when 
we set a value for e we can choose a wrong value (namely e > s*) and, hence, the 
global minimizer of Z(x; e) can have no connection with the global solution of 
Problem (P). In order to increase the likelihood of using a right value of the 
penalty parameter (that is e ~< e*) we should choose very small values of e. 
However, such values of the penalty parameters would make the penalty function 
Z(x; e) so ill-conditioned that any minimization algorithm would not be able, in 
practice, to locate the minimizers of this function. 

Therefore we must define ad hoc algorithms that overcome this problem of the 
choice of the penalty parameter (without assuming the knowledge of the 
threshold value e*). 

Many of the most efficient algorithms in the field of the unconstrained global 
optimization (see, e.g., tunneling methods, clustering methods, multistart algo- 
rithms, simulated annealing algorithms and so on) consist of a global strategy, 
which tries to locate the region of attraction of a global minimum point x*, and a 
local strategy, which tries to determine the point x* by using a local minimization 
algorithm. 

As regards the local strategy, in the unconstrained case it is possible to exploit 
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the fact that; under suitable assumptions, every local minimum point x* (and 
hence also the global minimum point) is an attraction point for a local minimiza- 
tion algorithm, namely that there exists a neighborhood B of x* such that the 
sequence of points produced by a local minimization algorithm, starting from any 
point of B, converges to x* (see, for example, Proposition 1.12 of [19] which 
states that unconstrained strong local minima tend to attract gradient-related 
methods). 

In the constrained case, it is not immediate to prove a similar property. In fact 
if we want to use the penalty function Z(x; e) to determine the local minima of 
Problem (P), since the threshold value e* is not known, we have to recourse to 
algorithms which include automatic adjustment rules for the penalty coefficient 
which appears in the function Z(x; e) (see, for example, the algorithms proposed 
in [14] and [15]). These algorithms change the objective function during the 
minimization procedure and hence, in general, it is not possible to show that they 
are attracted by global minima of Problem (P). However, following the approach 
proposed in [14] and [15], we can describe a particular algorithm model that 
enjoys this property. This algorithm model employs a general unconstrained 
minimization algorithm described by the iteration map 2d: SC~p ~ 2 a~  and such 
that it satisfies the following assumption. 

ASSUMPTION M. For every fixed value of  e and every starting point Xo ~ ~1~, 
the iteration map ~ produces a sequence of  points {xk} such that: 

(i) all the points x~ belong to l~p(2); 
(ii) there exists a positive constant y such that for all k 

IlXk§ - xkll IlVz(xk; e)ll ; 

(ii 0 all the limit points of  the sequence {Xk} are stationary points of  Z(x; e). [] 

Furthermore, as stopping criterion, the proposed algorithm model makes use of 
the following function: 

~(x) := CliVE(x, A(x), ~(x))ll 2 + IIa(x)A(x)ll 2 + IIh(x)ll 2 + IIg+(x)ll = 

+ IIA-(x)II2) I'2 , (9) 

where A-ix ) is the vector with component Ai-(x):= min[0, hi(x)]. 

ALGORITHM LA. 
Data: 2 ~ N n, "01 > 0, "02 > 0, '03 > 0 and p/> 2. 
Step 0: If ~b(2)=0 stop; else set e='01 min[1, ~b(/)], a=~72q~(2)§ 

g+(fC) p + ~7= 1 hi()c) 2 and z = 2. 
Step 1: Set k = 0. If Z(2; e) <~ Z(z; e) set x 0 = 2 else set x 0 = z. 
Step 2: If 
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IlVZ(x ; e)ll § IlVg(x )'VZ(x ;  )11 + IlVh(x )'VZ(x ;  )112 

<,dllc(x ;  )112 + IIh(x )ll 2) 

choose e E (0, e), set z = x~ and go to step 1. 
Step 3: Compute Xk+l C~[Xk] and set k = k +  1. 
Step 4: If (O(Xk)= 0 stop; else go to step 2. 

The convergence properties of Algorithm LA are stated in the following 
proposition. 

PROPOSITION 7. 
(i) I f  Algorithm LA  updates the penalty parameter e a finite number of  times 

then, either the algorithm terminates at some x~ E sg p and (x~, A(x,), Ix(x,)) is 
a K -  T triple for Problem (P), or the algorithm produces an infinite sequence 
{x~} C ~ p  such that every limit point x* yields a K - T  triple (x*, A(x*), 
/x(x*)) for Problem (P). 

(ii) I f  Algorithm LA  updates the penalty parameter e an infinite number of  times 
then there exists, at least, a limit point x* of  the produced sequence {xk } where 
Assumption A3 is not satisfied. 

(ii 0 I f  either 2 or Assumption A3 holds then Algorithm LA  updates the penalty 
parameter e a finite number of  times. 

Proof. The proof follows with minor modifications from those of Proposition 
5.1, Theorem 5.2 and Proposition 5.3 of [15]. [] 

As regards Assumption M on the map M, it is easy to see that it can be satisfied 
by almost all globally convergent algorithm for the unconstrained minimization of 
Z. In fact it is enough to ensure, by simple device, that the trial points (produced 
along the search direction) remain in 12 p(2). 

Algorithm LA is very similar to the one proposed in [15], in particular we have 
defined the choices of the initial penalty parameter and the parameter t~. These 
particular choices are very important because they allow us to ensure that 
Algorithm LA, unlike the algorithms proposed in [14] and [15], is "attracted" by 
a strong local minimum of Problem (P). In fact we can state the following result. 

PROPOSITION 8. Assume that: 
(i) there exist scalars d~ > 0 and p >1 3 such that the set ~lap is bounded; 

(ii) for every x E o ~ the gradients Vgi(x ), i E Io(x ), Vhj(x), j = 1 , . . . ,  q are linearly 
independent. 

Then for every local minimum point x* of  Problem (P) that satisfies the strict 
complementarity and the second order sufficiency conditions there exists an open 
set S containing x* such that, if 2 E S, Algorithm LA,  starting from 2, produces a 
sequence of  points {x~} which remains in S and converges to x*. 
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Proof. First of all, Proposition 1 implies that there exists an 5 ~< & such that for 
all a E (0, 5] the corresponding set M~p satisfies Assumptions A1 and A3. Then, 
by continuity, there exists a 0-0 > 0 such that if ~ E B(x*; 0-0): = {x: IIx - x*ll < 0"0} 
then Step 0 of Algorithm LA chooses 

q 

= ~26( i )  + g ; ( i Y  + E h,( i)  2 ~< a ,  
i=i j=1 

and, hence, the chosen set M,p satisfies Assumptions A1 and A3. 
Then, by Lemma 4.2 of [15], we have that there exist numbers e(x*)>0, 

o'(x*) > 0 (with o'(x*) ~< 0-0) and p(x*) > 0 such that, for all e E (0, e(x*)] and for 
all x E M~p satisfying IIx -x*ll  ~ 0- ( : ) ,  the following formula holds: 

IlVg(~)'VZ(x; ~)112 + IlVh(x)'VZ(x; ~)112 ~ P( -~ -  (llc(x; s)[I 2 + IIh(x)ll2). 

(lO) 

By the continuity assumptions, it follows that there exist a 0" 1 > 0 ,  with 0"1 ~ 
0"(x*), such that for all x E B(x*; 0-1) : = {X: [IX --  X*[[ '~  ffl } the following inequa- 
lity holds: 

1 
~(x) < - - m i n [ s * ,  s(x*), s l ,  (11) 

1:11 

where 

(p(x*)] 112 
= \ - - - ~ 3  / ' (12) 

and ~b(x) is defined by (9), 7 h and ~/2 are the constants used in Algorithm LA, and 
s* is the number considered in Proposition 4. 

Now let us suppose that x0 = 2 E B(x*; 0-1). In this case, at Step 1, Algorithm 
LA chooses an initial penalty parameter s = g such that, by using (11) and 
Proposition 4, the point x* is an isolated local minimum point for Z(x; #) and the 
Hessian matr ix  vZZ(x*;  g) is positive definite. Then (10), (11) and (12) imply that 
the test at Step 2 is not satisfied by x 0 and g. More in general, if the points xk 
produced by Algorithm LA starting from x0 remain in B(x*; 0-1) then the penalty 
parameter is never updated. 

At this point, the proof of the proposition can be carried out by reasoning as in 
the proof of Proposition 1.12 of [19] where a similar result is proposed for the 
case of unconstrained minimization algorithms. 

We can find a 0-2>0, with o-z<o-1, such that, for all xE/~(x*; o-z):={x: 
[[x - x*[[ <~ %}, the function Z(x;g) is twice differentiable and the matrix 
VZZ(x; g) is positive definite. Then we define: 
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01 = min O'm(V2Z(x; i ) ) ,  0 2 = max o'M(VZZ(x; ~)), 
X~/~(X* ;O2) XE O(x* ;o'2) 

w h e r e  OVm(V2Z(x'~ ~)) and o-M(V2Z(x; g)) are respectively the smallest and the 
largest eigenvalue of vZZ(x; g). 

Now we introduce the open set: 

S : =  x: I l x - x * l l < ~ 2 ,  Z(x; g ) < z t x * ;  i ) + T \ I + T 0 2 I  j ,  

and we prove that if x 0 ~ S then Algorithm LA, starting from x0, produces points 
xk that belong to open set S. 

First we recall that, since x 0 E S C_ B(x*; o-1), the test at Step 2 is not satisfied 
and, hence, the penalty parameter is not updated. Then, by using Taylor's 
theorem, we obtain: 

IlVz(x0; ~)11 ~ 021Ix0 - x*ll ,  

IIx0 - x*ll ~ ( / ( x 0 ;  ~) - Z(x*; ~)) <~ a + ~,o2' 

which, recalling Assumption M, implies: 

llxl -x*tl  ~ ltxo -x* l l  + Ilxl -Xoll ~ IlXo -x*l l  + r IlVZ(xo; ~)11 

(1 + ~02)llxo - x*ll ~ ~ 2 .  

Moreover, by assumption, we have 

01[ O'2 ~ 2 
Z(xl; e) <<. Z(xo; ~) < Z(x*; ~) + - y  \ 1 + ~02/ ' 

and, therefore, we obtain that x 1 ~ S. 
Suppose now that for a given k we have that x k E S. Using the same arguments 

used for the first iteration of Algorithm LA and taking into account that, by 
assumption, Z(xk+l; g)<~Z(xo; g), we obtain that Xk+l~S. Therefore we can 
conclude that x k E S for all k. 

The preceding part of the proof implies that every limit points of sequence {Xk) 
belongs to g (the closure of S). Moreover, by using the assumptions made on the 
iteration map ~ of Step 3, we have that every limit points of {x,} is stationary 
point of Z(x; g). Since S C/~(x*; o'z), Z(x; g) is a strictly convex function within 
and, hence, the point x* is the unique critical point of Z(x; g) within S. Therefore 
we can conclude that the sequence {Xk} converges to x*. [] 

The preceding proposition shows that, for every strong global minimum, there 
exists a neighborhood such that Algorithm LA, starting from any point in this 
neighborhood, converges to global minimum. This property ensures that Algo- 
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rithm LA can be successfully used, as local strategy, in a constrained global 
minimization algorithm. 

As regards the problem to locate the region of attraction of the global 
minimum, we can again draw our inspiration to the unconstrained case and we 
can define several different global strategies based on the penalty function 
Z(x; e). However we must take into account that, also for the global strategy, we 
have the problem of the choice of the penalty parameter e. 

Here,  as an example, we study the possibility to define an algorithm which 
combines the simulated annealing approach with Algorithm LA. It consists of 
several local minimizations and its aim, as usual, is to let the local minimizations 
start only when the point generated at random appears to be sufficiently 
promising and, hence, to spare useless local minimizations. In particular we 
follow the approach proposed in [16] which was inspired by the works on the 
simulated annealing approach to continuous global optimization [20-22]. 

A L G O R I T H M  GA. 
Data: 2 ~ N  n, g > 0 , . T > 0 .  

Step O: Choose & > 0 and p i> 3 such that 2 E ~Sp, set k = 1, xk = x~ = 2, e k = g 
and T k = T. 

0 Step 1: Compute a new point x k by using Algorithm LA starting from xk. 
Step 2: If (Xk, A(Xk), ~(Xk) ) is a K - T  triple for Problem (P) and f(xk) <f (2k)  set 

2k+ 1 = x k ; else set 2k+ 1 = Xk" 
Step 3: Choose ek+ 1 E (0, ek] and Tk+ 1 E (0, Tk], set k = k + 1. 
Step 4: Set i = 1. 
Step 5: Generate the independent random variables Y~ and W~ uniformly 

distributed in ~r and [0, 1] respectively, independently of all those 
previously generated. 
If Step 6: 

W ~  ~< e -[Z(Y~ ; ek)-Z(ik ; ek)l+/Tk 

set i k=i ,  x~ = Yig k and go' to Step 1; else set i = i +  1 and go to Step 5. 
[] 

Steps 4-6 of the preceding algorithm constitute the Von Neumann's acceptance- 
rejection method that generates (see Theorem 3.4.1 of [23] or Theorem 2.2 of 
[16]) a sample y~k distributed according the following probability density 
function: 

- [Z(x ;  E,k)--Z(fc k ; ek)]+ / Tk  e 
7r(x; e~, Tk):= fa  e -[z(x;'k)-z(~k; ~k)]+/Tk dx 

ap 
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Therefore as T~ becomes small, Algorithm GA tends to generate points y~k such 
that z(Yi[; e~). Therefore this acceptance-rejection technique produces a kind of 
random tunnelling effect on the penalty function Z(x; ek). 

Now we want to prove that Algorithm GA converges to a global minimum of 
Problem (P). Since Algorithm GA is strongly based on the penalty function 
Z(x; e~), intuitively it would seem necessary to assume that e k ~< e*, where e* is 
the threshold value which ensures the correspondence between problem (P) and 
the unconstrained minimization of Z(x; e~). Therefore the problems described for 
the local strategies should arise again. On the contrary, quite surprisingly, the 
following theorem shows that Algorithm GA converges in probability to a global 
minimum point of Problem (P) for every bounded sequence {ek} (note, in 
particular, that it is possible to choose e k = g for all k). 

T H E O R E M  4. Suppose that: 
(i) the set ~ap is bounded; 
(ii) for every x E ~ the gradients Vgi(x), i E Io(x ), 7hj(x), j = 1 , . . . ,  q are linearly 

independent; 
(iii) every global minimum point of Problem (P) satisfies the strict complementari- 

ty and the second order sufficiency conditions. 
Then the sequence of points {2~} produced by Algorithm GA converges in 

probability to a global minimum point of Problem (P). 
Proof. Again Proposition 1 ensures that there exists an a ~< & such that the 

corresponding set ~ p  satisfies Assumptions A1 and A3. Now let S be the set of 
global minimum points of Problem (P), that is: 

S :-- {x* E o%: f(x*) <~f(x), for all x ~ o %) . 

By (i) we have that S is a compact set and by using also (iii) we obtain that S has 
a finite number of elements. 

Recalling Corollary 2.1 of [16] (see also [24]), in order to prove the theorem we 
have only to show that if 2 i ~ S, for i = 1 . . . . .  k, then, for any 6 > 0 sufficiently 
small there exists a positive constant 3'1 such that: 

e-[ZCx; 8k)--Z('~k;Ek)l+/Tk ~ ~/1 (13) 

for all x such that Z(x; ek) <~ Z(x*; ek) + 6, with x* E S. 
Let ~ be a sufficiently small value of the penalty parameter such that Theorem 

1, Theorem 2 and Proposition 4 hold. 
By Theorem 2 we have: 

S = {x* E s4p: Z(x*; g) <~ Z(x; g), for all x ~ ~ p  }. 

By using assumption (iii) and Proposition 4 we obtain that, for every x * ~  S, 
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Z(x; g) is strictly convex within a neighborhood of x*, namely there exists a 
positive constant o'x. such that: 

V Z ( x ; g ) r  foral l  x: l l x - x * l l < ~ x , ,  x ~ x * .  (14) 

Now, we define the following set: 

N {x: IIx-x*ll > x.). 
x*~S 

Recalling that 2 k is a KKT point, by Theorem 1 we have that VZ(2 k ; g) = 0 and 
hence, recalling (14), we conclude that xk E ~-. 

Since the set M~p n ~- is compact and Z(x; g) ---> ~ as x---> O,ff, w there exists 
such that: 

Z(2;  g )=  min Z(x; g). 
x~Aapn~ 

Now, the fact that 3-fq S = 0 implies that Z(x*; ~ )<  Z(2; g) for all x * E  S. 
Taking into account that 2 k ~ ~- we have 

Z(x*; g) < Z(2;  g) ~ Z(2 k ; g) 

and recalling again Theorem 1 we obtain: 

Z(x*; ek) = f(x*) = Z(x*; g) < Z(2;  ~) ~< Z(2 k ; g) = f(2g) = Z(.~ k ; e~,). 

Therefore, finally, for any 8 ~< Z(2; g) - Z(x*; g) ~< Z(2 k ; eg) - Z(x*; ek) we 
have: 

e -[z(x; ~k)-Z(~k; "k)l+/Tk = 1 

for all x such that Z(x; ek) ~ Z(X*; ek) + 8, with x* E S .  [] 

The preceding theorem confirms that the Algorithm LA and the strong exactness 
properties of the function Z allow to obtain the same properties of convergence 
obtained in [16] for the unconstrained case. 

Finally we conclude this section by pointing out that the use of an exact penalty 
function could be essential also to define stopping criteria for constrained global 
optimization methods. In fact, since these functions transform the original 
problem into an unconstrained one, they couldal low to use directly the many 
interesting stopping criteria proposed in literature (see, e.g. [25-30]) for the 
unconstrained global minimization problems. With regard to Algorithm LA, since 
it is based on an acceptance-rejection technique which produces uniformly 
distributed points, these points could be used for any kind of sophisticated 
statistical analysis. Therefore, various stopping rules proposed in literature could 
be easily modified and used in Algorithm LA. 
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Appendix 

For the sake of completeness, in this appendix we recall Theorem 2.1 of [6]. In 
particular we report a slightly modified version of this theorem. The proof of this 
version follows immediately, with minor modification from the proof of the 
original result. 

THEOREM A. Let f be a function from 5e---> • and assume that: 
(i) 5e is open, connected, and not empty; 

(ii) fc is continuously differentiable in 5P; 
(iii) for every cr > O, there exists a compact subset K~ of 5e, so that f(x) >i cr for all 

x~:K~; 
(iv) every stationary point of  f on 5P is a strict local minimum point. 

Then, there exists only one stationary point which is a global minimum point o f f  
on 50. 
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